LxMLS - Lab Guide

July 19, 2011

Day 0
Basic Tutorials

In this class we will introduce several fundamental concepts needed further
ahead. We start with an introduction to Python, the programming language we
will use in the lab sessions. Afterwards, we present several notions on proba-
bility theory and linear algebra. Finally, we focus on numerical optimization.

The goal of this class is to give you the basic knowledge for you to under-
stand the following lectures. We will not enter in too much detail in any of the
topics.

0.1 Python

0.1.1 Running Python

You can access and run Python interactively, simply by running the python
command. Alternatively, you can save your program to a file and run python
on it:

python yourfile.py

In these lab sessions, we are going to be using Python in interactive mode
several times. The standard Python interface is not very friendly, though.
IPython, which stands for interactive Python, is an improved Python shell. It
saves your command history between sessions, has basic auto-complete, and
has internal support for interacting with graphs through matplotlib.

IPython is also designed to facilitate running parallel code of clusters of
machines, but we will not make use of that functionality.

To run IPython, simply run IPython on your command line. For interac-
tive numeric use, the ~pylab flag imports numpy and matplotlib for you and
sets up interactive graphs:

IPython -pylab

Help and Documentation

There are several ways to get help on IPython:

¢ Adding a question mark to the end of a function or variable and pressing
Enter brings up associated documentation. Unfortunately, not all pack-
ages are well documented. Numpy and matplotlib (the two libraries we
will extensively use in the lab sessions) are pleasant exceptions;

* help ('print’) getsthe online documentation for the print keyword;

* help (), enters the help system.

When at the help system, type g to exit.
For more information on IPython (Pérez and Granger,|[2007), check the web-
site: http://ipython.scipy.org/moin/

Profiling

If you are interested in checking the performance of your program, you can use
the command %prun in IPython (this is an IPython-only feature). For example:

myfunction (x) :

$prun myfunction (22)

Exiting
Exit IPython by typing exit () or quit () (or typing CTRL-D).

0.1.2 Python by Example

The first program of every programmer in every new language prints “Hello,
World!”. In Python, this simply reads:

In[]: "Hello, World!"
Out[]: Hello, World!

http://ipython.scipy.org/moin/

Data Structures

In Python, you can create lists of items with the following syntax:

countries = ['Portugal', 'Spain', 'United Kingdom']

A string should be surrounded with apostrophes (’). You can access a list
with the following;:

e len (L), which returns the number of items in L;
e 1[i], which returns the item at index i (the first item has index 0);

* L[i:3j], whichreturns a new list, containing the items between i and j.

Exercise 0.1 Use L[i:j] to return the countries in the Iberian Peninsula.

Loops

Aloop allows a certain section of code to be repeated a certain number of times.
The loops continue until a stop condition is reached. For instance, when a vari-
able has reached a certain value or when the list you are iterating has reached
its end. In Python you have while and for loops.

The following two programs output exactly the same: the even numbers
from 2 to 8.

i range (2,10,2):
i

(G

The range function is built int to Python and it creates lists containing
arithmetic progressions.

Exercise 0.2 David, John, Allysson and Anne are four of your colleagues in the Sum-
mer Course. Create a python program to greet all of them. The output should be

Hello, David!
Hello, John!

Hello, Allysson!
Hello, Anne!

Note that you have around 100 colleagues. You should use the data structures you
have just learned to minimize the lines of code you are using in this exercise.
Control Flow

The if statement allows to control the flow of your program. The next pro-
gram makes a greeting that depends on the time of the day.

G}

hour < 12:
'Good morning!'
hour >= 12 hour < 20:
'Good afternoon!'’

'Good evening!'

Functions

A function is a block of code that can be reused to perform a similar action. The
following is a function in Python.

N

greet (hour) :
hour < 12:
'Good morning!'
hour >= 12 hour < 20:
'Good afternoon!'

'Good evening!'

If you call the function greet with different hours of the day, the program
will greet you accordingly.

Exercise 0.3 Note that the previous code allows the hour to be less than 0 or more
than 24. Change the code in order to indicate that the hour given as input is invalid.
Your output should be something like:

greet (50)
Invalid hour: it should be between 0 24.

greet (-5)
Invalid hour: it should be between 0 24.

Indentation

In Python, indentation is important. This is how Python differentiates between
nested and non-nested blocks of commands. For instance, consider the follow-
ing code and its output:

a=1

AN
N

Exercise 0.4 Can you predict the output of the following code:

a=1

0.1.3 Plotting in Python - Matplolib

Matplotlib is a plotting library for Python. It supports 2D and 3D plots of vari-
ous forms. It can show them interactively or save them to a file (several output
formats are supported).

numpy np
matplotlib.pyplot plt

N

4 X = np.linspace (-4, 4, 1000)

4 plt.plot (X, X%x*2*np.cos (Xx%2))
plt.savefig ("simple.pdf")

Exercise 0.5 Try running the following on IPython, which will introduce you to some
of the basic numeric and plotting operations.

17

19

21

This will import the numpy library
and give it the np abbreviation
numpy np

This will import the plotting library
matplotlib.pyplot plt

Linspace will return 1000 points,
evenly spaced between -4 and +4
X = np.linspace (-4, 4, 1000)

H

Y[1] = X[1]#*%2
Y = X##2

Plot using a red line ('r')
plt.plot (X, Y, 'r'")

arange returns points ranging from -4 to +4
(the upper argument is excluded!)
Ints = np.arange(-4,5)

We plot these on top of the previous plot
using blue circles (o means a little circle)
plt.plot (Ints, Ints#*#2, 'bo')

You may notice that the plot is tight around the line
Set the display limits to see better
plt.xlim(-4.5,4.5)

plt.ylim(-1,17)

0.1.4 Numpy

Numpy is a library needed for scientific computing with Python.

Multidimensional Arrays

The main object of numpy is the multidimensional array. A multidimensional
array is a table with all elements of the same type and can have several dimen-
sions.

Numpy provides various functions to access and manipulate multidimen-
sional arrays. In one dimensional arrays, you can index, slice, and iterate as
you can with lists. In a two dimensional array M, you can use perform these
operations along several dimensions.

* M]Ii], to access the item in the ith row and j-th column;
* M[i;j,], to get the all the rows between the i-th and j-th;

* M[:i], to get the i-th column of M.

Again, as it happened with the lists, the first item of every column and
every row has index 0.

1 numpy np
A = np.array ([
3 [1,2,31,
[2,3,471,
5 [4,5,611)

1 A[0,:] # This is [1,2,3]
A[Q] # This is [1,2,3] as well

A[:,0] # this 1is [1,2,4]

A[l:,0] # This is [[2], [4]]. Why?

13 # Because it 1is the same as A[l:n,0] where n 1is the
size of the array.

Mathematical Operations

There are many helpful functions in numpy. For basic mathematical opera-
tions, wehave np.log, np.exp, np.cos,...with the expected meaning. These
operate both on single arguments and on arrays (where they will behave ele-
ment wise).

1 matplotlib.pyplot plt
numpy np

X = np.linspace (0, 4 x np.pi, 1000)
5 C = np.cos (X)
S = np.sin(X)

plt.plot (X, C)
9 plt.plot (X, S)

Other functions take a whole array and compute a single value from it. For
example, np. sum, np.mean,... These are available as both free functions and
as methods on arrays.

numpy np

]
I

np.arange (100)
np.mean (A)
A.mean ()

C = np.cos(A)
C.ptp ()

Exercise 0.6 Run the above example and lookup the ptp function/method (use the 2
functionality in ipython).

Exercise 0.7 Consider the following approximation to compute an integral

1 & f(i/1000)
/ f(x)dx ~ 2 EA A
0 = 1000
Use numpy to implement this for f(x) = x2. You should not need to use any

loops. The exact value is 1/3. How close is the approximation?

0.2 Probability Theory

Probability is the mathematical language for quantifying uncertainty. The sam-
ple space X is the set of possible outcomes of an experiment. Events are subsets
of X.

Example 0.1 (discrete space) Let H denote “heads” and T denote “tails.” If we toss
a coin twice, then X = {HH,HT,TH, TT}. The event that the first toss is heads is
A ={HH, HT}.

Sample space can also be continuous (eg., X = R). The union of events A

and B is defined as AUB = {w € X |w € AVw € B}. If A}, ..., Ay isa
n

sequence of sets then |J A; = {w € X | w € A, for at least one i}. We say that

i=1
Ay, ..., Ay are disjoint or mutually exclusive if A; N A; = & wheneveri # j.

We want to assign a real number P(A) to every event A, called the proba-
bility of A. We also call P a probability distribution or probability measure.

Definition 0.1 A function P that assigns a real number P(A) to each event
A is a probability distribution or a probability measure if it satisfies
the three following axioms:

Axiom 1: P(A) > 0 for every A
Axiom 2: P(X) =1
Axiom 3: If Ay, ..., Ay are disjoint then

P (O Ai> = ip(Ai).
i=1 1=

One can derive many properties of P from these axioms:

P(g) = 0
ACB = P(A) < P(B)
0< P(A) <1
P(A") = 1—P(A) (A isthe complement of A)
P(AUB) = P(A)+P(B)—P(ANB)

ANB=¢ = P(AUB)=P(A)+P(B).

An important case is when events are independent, this is also a usual ap-
proximation which lends several practical advantages to the computation of
joint probability.

Definition 0.2 Two events A and B are independent if
P(AB) = P(A)P(B) (1)

often denoted as A L B. A set of events {A; : i € I} is independent if

i€e] ic]

P (ﬂ Ai) =TIP(A)

for every finite subset | of L.

For events A and B, where P(B) > 0, conditional probability of A given B
has occurred is defined as

P(AB)
P(B) -

Events A and B are independent if and only if P(A|B) = P(A). This follows
from the definitions of independence and conditional probability.

P(A[B) =)

A preliminary result that forms the basis for the famous Bayes’ theorem is
the law of total probability which states that if Ay,..., Ay is a partition of X,

then for any event B,
k

= Y P(B|A;)P (©)

i=1

Using Equations[2]and[3] one can derive the famous Bayes’ theorem.

Theorem 0.1 (Bayes’ Theorem) Let Ay, ... Ay be a partition of X such that
P(A;) > 0 foreachi. If P(B) > O then, foreachi=1,...,k,

_P(BJA;)P(4))
PUAIB) = & p(BlA (A @

Remark 0.1 P(A;) is called the prior probability of A and P(A;|B) is the poste-
rior probability of A.

Remark 0.2 In Bayesian Statistical Inference, Bayes’ theorem is used to compute the
estimates of parameters for distributions from data; Where, prior is the initial belief
about the parameters, likelihood is the distribution function of the parameter (usually
trained from data) and posterior is the updated belief about the parameters.

0.2.1 Probability distribution functions

A random variable is a mapping X : X — R that assigns a real number X(w)
to each outcome w. Given a random variable X, an important function called
the cumulative distributive function (or distribution function) is defined as:

Definition 0.3 The cumulative distribution function CDF Fx : R — [0,1] of a
random variable X is defined by Fx(x) = P(X < x).

The CDF is important because it captures the complete information about
the random variable. The CDF is right-continuous, non-decreasing and is nor-
malized (limy_,_ o F(x) = 0 and limy_,co F(x) = 1).

Example 0.2 (discrete CDF) Flip a fair coin twice and let X be the random variable
indicating the number of heads. Then P(X = 0) = P(X =2) = 1/4and P(X =
1) = 1/2. The distribution function is

0 x <0
) 174 0<x<1
Ex() =1 3/4 1<x<2
1 x > 2.

10

Definition 0.4 X is discrete if it takes countable many values {x1, x, . . .}. We define
the probability function or probability mass function for X by

Definition 0.5 A random variable X is continuous if there exists a function

fx such that fx >0 forall x, [fx(x)dx =1 and for everya <b

b
P(a< X <b)= / Fx(x)dx. 5)

The function fx is called the probability density function (PDF). We have
that

Fx(x) = /fx(t)df

and fx(x) = F;((x) at all points x at which Fx is differentiable.

A discussion of a few important distributions and related properties:

0.2.2 Bernoulli

The Bernoulli distribution is a discrete probability distribution that takes 1
with the success probability p and 0 with the failure probability g =1 —p. A
single bernoulli trial is parametrized with the success probability p, and the
input k € {0,1} (1=success, O=failure), and can be expressed as

flsp) =prq = pra —p)t=*

0.2.3 Binomial

The probability distribution for the number of successes in n Bernoulli trials
is called a Binomial distribution, which is also a discrete distribution. The
Binomial distribution can be expressed as exactly j successes is

smm = (") pgr = (1) P pr

where 7 is the number of Bernoulli trails with probability p of success on each
trial.

11

0.2.4 Categorical

The Categorical distribution (often conflated with the Multinomial distribu-
tion, in fields such as Natural Language Processing), is another generalization
of the Bernoulli distribution, allowing the definition of a set of possible out-
comes, rather than simply the events “success” and “failure” defined in the
Bernoulli distribution. Considering a set of outcomes indexed from 1 to n, the
distribution takes the form of

f(xi; p1s s Pn) = Pi-

Where parameters pj, ..., py is the set with the occurrence probability of each
outcome. Note that we must ensure that } ' ; p; = 1, so we can set p, =

i pi=1

0.2.5 Multinomial

The Multinomial distribution is a generalization of the Binomial distribution
and the Categorical distribution, since it considers multiple outcomes, as the
Categorial distribution, and multiple trials, as in the Binomial distribution.
Considering a set of outcomes indexed from 1 to n, the vector xi, ..., x,, where
x; indicates the number of times the event with index i occurs, follows the
Multinomial distribution

n! X x
f(xll..., Xns P1s s pn) = ﬁpll...pnn.
Loxy!

X1
Where parameters py, ..., ps is the occurrence probability of the respective out-
come.

0.2.6 Gaussian Distribution

A very important theorem in probability theory called the Central Limit Theo-
rem states that, under very general conditions, if we sum a very large number
of mutually independent random variables, then the distribution of the sum
can be closely approximated by a certain specific continuous density called the
normal (or Gaussian) density. The normal density function with parameters y
and o is defined as follows:

f(x) = e G oy < oo,

= —-2e¢
V2o

Fig. [1} compares a plot of normal density for the cases 4 = O and o = 1,
andy =0and o = 2.

12

Figure 1: Normal density for two sets of parameter values.

0.2.7 Conjugate Priors

Definition 0.6 let F = {fx(x|s),s € X} be a class of likelihood functions; let P be a
class of probability (density or mass) functions; if, for any x, any pg(s) € P, and any
fx(x|s) € F, the resulting a posteriori probability function ps(s|x) = fx(x|s)ps(s)
is still in P, then P is called a conjugate family, or a family of conjugate priors, for
J.

0.2.8 Maximum Likelihood Estimation

Until now, we assumed that, for every distribution, the parameters 6 are known
and are used we calculate p(x|6). There are some cases where the values of the
parameters are easy to infer, such as the probability p getting a head using
a fair coin, used on a Bernoulli or Binomial distribution. However, in many
problems, these values are complex to define, and it is more viable to estimate
the parameters using the data x. For instance, in the example above with the
coin toss, if the coin is somehow tampered to have a biased behavior, rather
than examining the dynamics of the structure of the coin to infer a parameter
for p, a person could simply throw the coin 7 times and count the number of
heads h and set p = % In doing this, the person is using the data x to estimate
6.

With this in mind, we will know generalize this process. We define the
probability p(6|x), which is probability of the parameter 6, given the data x.
This probability is called likelihood £(6|x) and measures how well the pa-
rameter § models the data x. This can be defined in terms of the distribution f
as

L(O|x1, ...,) = ﬁf(xiw)

13

where x4, ..., x, are iid samples.

To understand this concept better, we go back to the tampered coin example
again. Suppose that we throw the coin 5 times and get the sequence [1,1,1,1,1]
(1=head, O=tail). Using the Bernoulli distribution f tomodel this problem,
we get the following likelihood values:

e £(0,x) = f(1,00°=0°=0
e £(0.2,x) = f(1,0.2)°> = 0.2° = 0.00032
e £(04,x) = f(1,04)° = 0.4° = 0.01024
e £(0.6,x) = f(1,0.6)°> = 0.6° = 0.07776
e £(0.8,x) = f(1,0.8)°> = 0.8° = 0.32768
e L(L,x)=f(1,1)°=15=1

If we get the sequence [1,0,1,1,0] instead, the likelihood values would be:

e £(0,x) = f(1,0)3f(0,02=0*x 12 =0

e £(0.2,x) = £(1,0.2)3£(0,0.2)% = 0.23 x 0.8 = 0.00512

e £(0.4,x) = f(1,0.4)3£(0,0.4)% = 0.43 x 0.6> = 0.02304

e £(0.6,x) = £(1,0.6)3£(0,0.6)> = 0.6> x 0.4% = 0.03456

e £(0.8,x) = f(1,0.8)3£(0,0.8)% = 0.8% x 0.22 = 0.02048
(

e L(1,x)=f(1,1)’=13x0>=0

We can that likelihood is highest when the distribution f with parameter p
is the best fit for the observed samples. Thus, the best estimate for p according
to x would the value where £(p, x) is highest.

The value of the parameter 6 with the highest likelihood is called maximum
likelihood estimate(MLE) and is defined as

O,n1c = argmaxgL(0]x)

Finding this for our example is relatively easy, since we can simply derivate
the likelihood function to find the absolute maximum. For the sequence [1,0,1,1,0],
the likelihood would be given as

L(p,x) = f(Lp)f(0,p)* = p’(1—p)?
And the MLE estimate would be given by:

6L (p, x)

op =0

14

which resolves into

Pmile = 0.6

Exercise 0.8 Over the next couple of exercises we will make use of the Galton dataset,
a dataset of heights of fathers and sons from the 1877 paper that first discussed the
“regression to the mean” phenomenon.

0.3

Use the 1oad () function in the galton. py file to load the dataset.

What are the mean height and standard deviation of all the people in the sample?
What is the mean height of the fathers and of the sons?

Plot a histogram of all the heights (you might want to use the p1t.hist func-
tion and the ravel method on arrays).

Plot the height of the father versus the height of the son.

You should notice that there are several points that are exactly the same (e.g.,
there are 21 pairs with the values 68.5 and 70.2). Use the ? command in ipython
to read the documentation for the numpy . random. rand function and add
random jitter (i.e., move the point a little bit) to the points before displaying
them. Does your impression of the data change?

Essential Linear Algebra

Linear Algebra provides a compact way of representing and representing on
sets of linear equations.

4X1 *53('2 =13
—2x1 +3X2 =9

This is a system of linear equations in 2 variables. In matrix notation we
can write the system more compactly as

with

0.3.1

Ax =D

S ESRN

Notation

We use the following notation:

By A € R™*", we denote a matrix with m rows and n columns, where
the entries of A are real numbers.

15

* By x € R", we denote a vector with n entries. A vector can also be
thought of as a matrix with n rows and 1 column, known as a column
vector. A row vector — a matrix with 1 row and #n columns is denoted as
xT, the transpose of x.

¢ The ith element of a vector x is denoted x;
X1

X2

Xn

Exercise 0.9 In the rest of the school we will represent both matrices and vectors as
numpy arrays. You can create arrays in different ways, one possible way is to create
an array of zeros.

numpy np

You can check the shape and the data type of your array using the following com-
mands:

a.shape
(3, 2)
a.dtype.name
floaté64

This shows you that “a” is an 3*2 arrays of type float64. By default, arrays contain
64 bit floating point numbers. You can specify the particular array type by using the
keyword dtype.

a = np.zeros([m,n],dtype=int)
a.dtype

inté64

(On your computer, particularly if you have an older computer, int might denote
32 bits integers).

16

There are many other ways to create arrays, you can create arrays from lists of
numbers:

a = np.array([[2,3],[3,4]])
a

[rz 3]
[3 4]]

There are many more ways to create arrays in numpy and we will get to see them
as we progress in the classes.

0.3.2 Some Matrix Operations and Properties

e Product of two matrices A € R " and B € R"*? is the matrix C =
AB € R"™*P, where

n
Cij =) AuByj.
k=1

Exercise 0.10 You can multiply two matrix by looping over both indexes and
multiplying the individual entries.

a = np.array([[2,3],[3,4]])

b = np.array([[1,1],[1,1]])

a diml, a_dim2 = a.shape

4 b_diml, b_dim2 = b.shape

c = np.zeros([a_diml,b_dimZ2])

N

4 i xrange (a_diml) :
3 xrange (b_dim?2) :
8 k xrange (a_dimZ2) :

cli,j] += ali, k]«b[j, k]

This is, however, cumbersome and inefficient. Numpy supports matrix multipli-
cation with the dot function:

np.dot (a, b)

d

Important note: with numpy, you must use dot to get matrix multiplication,
the expression a * b denotes element-wise multiplication.

e Matrix multiplication is associative: (AB)C = A(BC).

17

* Matrix multiplication is distributive: A(B+ C) = AB + AC.
* Matrix multiplication is (generally) not commutative : AB # BA.

* Given two vectors x,y € R" the product x”y, called inner product or dot
product

n
T Y2 -
xye]R:[xl X2 ... xn] . :inyi.
. i=1
Yn

a = np.array([1,2])
b = np.array([1,11])

np.dot (a, b)

e Given vectors x € R™ and y € R", the outer product xy” € R"™*" is a
matrix whose entries are given by (xy”);; = x;yj,

X1 X1Y1 X1Y2 e X1Yn

X2 X2Y1 X2Y2 ... X2oYn
xyl € R™" = : [y v2 o Yy | =) .

Xn XmY1 XmY2 .. XmYn

np.outer (a,b)
array ([[1, 1]

(2, 211

* The identity matrix, denoted I € R"*", is a square matrix with ones on
the diagonal and zeros everywhere else. That is,

I = 1 i:j
PZ00 i)

It has the property that for all A € R"*", Al = A = IA.

I = np.eye(2)
x = np.array([2.3, 3.41])

I

18

np.dot (I, x)

* A diagonal matrix is a matrix where all non-diagonal elements are 0.

* The transpose of a matrix results from “’flipping” the rows and columns.
Given a matrix A € R™*", the transpose AT € R"*™ is the n x m matrix
whose entries are given by (AT);; = Aj;.

Also, (AT =4; (AB)T=BTAT, (A+B)T =AT +BT

In numpy, you can access the transpose of a matrix as the T attribute:

A = np.array ([[1, 2], [3, 41 1)
A.T

e A square matrix A € R™*" is symmetric if A = AT.

* The trace of a square matrix A € R"*" is the sum of the diagonal ele-

n
ments, tr(A) = Y Aj;
i=1

0.3.3 Norms

The norm of a vector is informally the measure of the “length” of the vector.
The commonly used Euclidean or ¢, norm is given by

-2
Ix[l2 = X
i=1

* More generally, the £, norm of a vector x € R", where p > 1 is defined
as

n 1y
Hﬂb=<2xﬁ> :

i=1

n
Note: ¢;norm: ||x]; = ¥ |xi loo norm : ||x||c = max;|x;| .
i=1

19

0.3.4 Linear Independence and Rank

A set of vectors {x1,x,...,x,} C R™ is said to be (linearly) independent if
no vector can be represented as a linear combination of the remaining vectors.
Conversely, if one vector belonging to the set can be represented as a linear
combination of the remaining vectors, then the vectors are said to be linearly
dependent. That is, if

n—1
Xp =) apx;
i=1

for some scalar values 1, ...,a,_1 € R.

* The rank of a matrix is the number of linearly independent columns.

e For A € R™*", rank(A) < min(m,n). If rank(A) =min(m, n), then A is
said to be full rank.

e For A € R"™*", rank(A)=rank(AT).
e For A € R™*", B € R"*?, rank(AB) < min(rank(A),rank(B)).
e For A,B € R™*", rank(A + B) < rank(A) + rank(B).

e Two vectors x,y € R" orthogonal if xy = 0. A square matrix U €
R"*" is orthogonal if all its columns are orthogonal to each other and are
normalized (||x||2 = 1), It follows that

u'u=r1=uur.

0.4 Numerical optimization

Most problems in machine learning require minimization/maximization of
functions (likelihoods, risk, energy, entropy, etc.,).

x* = argmin f(x)
X

In a few special cases, we can solve this minimization problem analytically
in closed form (solving for optimal x* in V, f(x*) = 0), but in most cases such
a solutions does not exist. In this section we will cover some basic notions
of numerical optimization. The goal is to provide the intuitions behind the
methods that will be used in the rest of the school. There are plenty of good
textbooks in the subject that you can consult for more information (Nocedal
and Wright, [1999; Bertsekas et al.,[1995; Boyd and Vandenberghe, 2004).

The most common way to solve the problems when no closed form solu-
tion is available is to resort to an iterative algorithm. In this Section, we will
see some of these iterative optimization techniques. These iterative algorithms

20

compute a sequence of points x(0),x(1), ... € domain(f) such that hopefully
x' = x*. Such a sequence is called the minimizing sequence for the problem.

0.4.1 Convex Functions

One important concept of the function f(x) is if it is convex function (in the
shape of a bowl) or a non-convex-function. Figures 2|and [3{show an example
of a convex and a non-convex function. Convex functions are particular useful
since you are guarantee that the minimizing sequence converges to the true
global minimum of the function, while in non-convex functions you can only
guarantee to reach a local minimum.

/

\

(z, f (CU)\)\{; - P e

Figure 2: Illustration of a convex function. The line segment between any two
points on the graph lies entirely above the curve.

———" (v, f(¥))

S

Figure 3: Illustration of a non-convex function. Note the line segment inter-
secting the curve.

Intuitively, imagine dropping a ball on either side of Figure 2} the ball will
role to the bottom of the bowl independently from where it is dropped. This is
the main benefits of a convex functions. On the other hand if you drop a ball
from the left side of Figure [3|it will reach a different position than if you drop
a ball from its right side. Moreover, dropping it from the left side will lead you
to a much better place than if you drop the ball from the right side. This is

the main problem with non-convex function, there are no guarantees about the
quality of the local minimum you find.

21

Function f(x) | Derivative %
x? 2x

x" nx 1

log(x) 5

exp(x) exp(x)

1 1

X 2

Table 1: Some derivative examples

More formally, some concepts to understand about convex functions are:
A line segment between points x; and x3: contains all points such that

x=0x;+(1-0)x,
where 0 < 6 < 1.

A convex set contains the line segment between any two points in the set

x,x€C, 0051 = 9X1+(1—9)X2€C

A function f : R" — R is a convex function if the domain of f is a convex
set and

flOx+(1-0)y) <0f(x)+(1-0)f(y)
forall x,y € domainof f,0 <0 <1

0.4.2 Derivative and Gradient

The derivative of a function is a measure of how the function varies with its
input variables. Given an interval [a,b] one can compute how the function
varies within that interval by calculating the average of the function in that

interval. fa) - £(b)
a J—
—r -~ 6
p— (6)
The derivative can be seen as the limit as the interval goes to zero, and it gives
us the slope of the function at that point.

of .. flx+h)—f(x)
ax ol I @

Table [I| shows derivatives of some functions that we will be using during
the school.

An important rule of derivation is the chain. Consider h = fo g, and u =
<(x), then:

22

oh _If g
ax au ax ®)

Example 0.3 Consider the function h(x) = exp(x?).

h(x) = f(g(x)) = f(u) = exp(u), where u = g(x) = x2

d
o _ a% -9 = exp(u) - 2x = exp(x?) - 2x

Example 0.4 Consider the function f(x) = x* and its derivative %. Look at the
derivative of that function at points [-2,0,2], draw the tangent to the graph in that
point.

L(-2)=-4L0)=0ad ¥ (2) =4

For example, the tangent equation for x = —2is y = —4x — b, where b = f(—-2)

The following code plots the function and the derivatives on those points using
matplotlib (See Figure).

(G}

a = np.arange (-5,5,0.01)
f x = np.power (a,Z2)
plt.plot (a, f_x)

plt.x1im(-5,5)
plt.ylim(-5,15)

k= np.array([-2,0,2])
plt.plot (k, k**2, "bo")
i k:
plt.plot(a, (2+1i)*a — (ix*#2))

The gradient of a function is a generalization of the derivative concept we
just saw before, for several dimensions. Lets assume we have a function f(x)
where x € IR? so can be seen as a pair x = x1,x; then the gradient measures

of of].

the slope of the function in both directions. Vf(x) = [E’ 9

0.4.3 Gradient Based Methods

Gradient based methods are probably the most common methods used for
finding the minimizing sequence for a given function. The methods use in
this class will make use of the function value f(x) as well as the gradient of
the function V f(x). The simplest method is the Gradient descent method, an
unconstrained first-order optimization algorithm.

The intuition of this method is as follows: You start at a given point xy and
compute the gradient at that point V, f(x). You then take a step of length 7 on
the direction of the negative gradient to find a new point: x1 = xg — 7V, f(x).

23

Figure 4: Illustration of the gradient of the function f(x?) at three different
points x = [—2,0.2]. Note that at point x = 0 the gradient is zero which corre-
sponds to the minimum of the function.

You proceed until the algorithm until you have reached a minimum (local or
global). Recall from the previous subsection that you can identify the mini-
mum by testing if the norm of the gradient is zero |V f(x)| = 0.

There are several practical concerns even with this basic algorithm to ensure
both that the algorithm converges (reaches the minimum) and that it does so in
fast way (by fast we mean the number of function and gradient evaluations).

¢ Step Size 77 A first question is how to find the step length 7. One condi-
tion is that eta should guarantee sufficient decrease in the function value.
We will not cover these methods here but the most common ones are
Backtracking line search or the Wolf Line Search (Nocedal and Wright,
1999).

¢ Descent Direction A second problem is that using the negative gradi-
ent as direction can lead to a very slow convergence. Different methods
that change the descent direction by multiplying the gradient by a ma-
trix B have been proposed that guarantee a faster convergence. Two no-
table methods are the Conjugate Gradient (CG) and the Limited Memory
Quasi Newton methods(LBFGS) (Nocedal and Wright, [1999).

¢ Stopping Criteria Finally, it will normally not be possible to reach full
convergence either because it will be too slow, or because of numerical is-
sues (computers cannot perform exact arithmetic). So normally we need
to define a stopping criteria for the algorithm. Three common criteria
(that are normally used together) are: a maximum number of iterations;
the gradient norm be smaller than a given threshold |V f(x)| < #1, or

24

the normalized difference in the function value be smaller than a given

) —f ()
threshold - e TirG oy < 2

Algorithm [1|shows the general gradient based algorithm. Note that for the

simple gradient descent algorithm S is the identity matrix and the descent di-
rection is just the negative gradient of the function | — V f(x)|. Figure 5|shows
an illustration of the gradient descent algorithm.

Algorithm 1 Gradient Descent

1:

given a starting point xp,i = 0
repeat

Compute step size 5

Compute descent direction j

Xip1 < % + BV f(x;)

i i+1

until stopping criterion is satisfied.

Figure 5: Illustration of gradient descent. The blue circles correspond to the
function values at different points, while the red lines correspond to steps taken
in the negative gradient direction.

Exercise 0.11 Consider the function f(x) = (x +2)? — 16exp (—(x — 2)?). Make
a function that computes the function value given x.

25

get_y(x):
value = pow((x+2),2) — lé6xmath.exp (-x*(x-2))

value

Draw a plot around x € [—8, 8].

X = np.arange(-8,8,0.001)
y = map(1: get_y(1l),x)
plot(x,y)

Calculate the derivative of the function f(x), implement the function get_grad(x).

get _grad (x) :

(2#+x+4)=16% (=24x + 4)+np.exp (= ((x-2)*%x2))

Use the method gradient_descent to find the minimum of this function. Convince
yourself that the code is doing the proper thing. Look at the constants we defined.
Note, that we are using a simple approach to pick the step size (always have the value
step_size) which is not necessarily correct.

gradient_descent (start_x, func, grad) :
2 # Precision of the solution
prec = 0.0001
4 #Use a fixed small step size
step_size = 0.1
i #max iterations
max_iter = 100
8§ X _new = start_x
res = []
10 1 xrange (max_1iter) :
x_old = x_new
12 #Use beta egqual to -1 for gradient descent
x_new = x_old - step_size x get_grad(x_new)
14 f_x_new = get_y (x_new)
f x old = get_y(x_old)
14 res.append([x_new, f_x_new])
(abs (f_x_new -f_x_old) < prec):
19 "change in function values to small, leaving"
np.array(res)
2("exceeded maximum number of iterations, leaving"
np.array(res)

26

Run the gradient descent algorithm starting from xo = —8 and plot the minimiz-
ing sequence.

x 0 = -8
res = gradient_descent (x_0,qget_y,get_grad)
plot(res([:,0],res[:,1],"'+")

100 T T T T T T T

80 8

40t 1

20+ 8

20 L L L L 1 1

Figure 6: Example of running gradient descent starting on point xo = —8 for
function f(x) = (x +2)? — 16exp (—(x —2)?). The function is represented
in blue, while the points of the minimizing sequence are displayed as green
squares.

Figure 6| shows the resulting minimizing sequence. Note that the algorithm con-
verged to a minimum, but since the function is not convex it converged only to a local
minimum.

Now try the same exercise starting from the initial point xo = 8.

x 0 = 8
res = gradient_descent (x_0,get_y,get_grad)
plot(res[:,0],res[:,1],"'+")

27

100 T T T T T T T

80 - 8

60 8

a0t -

20 - 8

,20_ L L L L | |

Figure 7: Example of running gradient descent starting on point xo = 8 for
function f(x) = (x +2)? — 16exp (—(x —2)?). The function is represented
in blue, while the points of the minimizing sequence are displayed as green
squares.

Figure[/|shows the resulting minimizing sequence. Note that now the algorithm
converged to the global minimum. However, note that to get to the global minimum
the sequence of points jumped from one side of the minimum to the other. This is a
consequence of using a wrong step size (in this case too large).

Repeat the previous exercise changing both the values of the step-size and the pre-
cision. What do you observe.

During this school we will rely on the numerical optimization methods pro-
vided by Scipy (scientific computing library in python), which are very efficient
implementations.

28

